583.
有限角度计算机断层扫描(LACT)旨在通过减少扫描角度的范围来减少辐射剂量。由于投影数据是不完备的且未考虑联合有限角度和金属伪影校正(LAMAR)任务,传统方法重建的CT图像往往存在伪影,特别是当患者携带金属植入物时,伪影将进一步加重,影响后期医疗诊断及下游任务的精度。为解决这一问题,该文利用双域知识和深度展开技术,融合Transformer的非局部特性捕获能力和卷积神经网络(CNN)的局部特征提取能力,提出了能够联合解决LAMAR和LACT任务的模型与数据双驱动双域重建网络,记为MD
3Net。该文首先构建了双域优化模型,使用邻近梯度下降算法对优化模型进行求解,并将其展开成模型驱动的CT重建网络。其次,设计了任务选择(TS)模块,通过判断初始估计CT图像中有无金属以利用同一模型同时处理有金属和无金属的重建任务。在数据驱动网络中,构建了融合Transformer和CNN的双分支的迹感知投影域邻近子网络和结合通道注意力、空间注意力的图像域邻近子网络,进而提升网络表示能力。实验结果表明,与现有方法相比,所提算法在联合LACT和LAMAR任务上重建效果更好。… …
相似文献